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Executive Summary

This research aims to develop new and more accurate stochastic models for speaker-independent
continuous speech recognition, by extending previous work in segment-based modeling and by
introducing a new hierarchical approach to representing intra-utterance statistical dependencies.
These techniques, which are more costly than traditional approaches because of the large search
space associated with higher order models, are made feasible through rescoring a set of HMM-
generated N-best sentence hypotheses. We expect these different modeling techniques to result
in improved recognition performance over that achieved by current systems, which handle only
frame-based observations and assume that these observations are independent given an underlying

state sequence.

In the fourth quarter of the project, we have: (1) ported our recognition system to the Wall
Street Journal task, a standard task in the ARPA community; (2) developed an initial dependency-
tree model of intra-utterance observation correlation; and (3) implemented baseline language model
estimation software. Our initial results on the Wall Street Journal task are quite good, representing
improved performance over most HMM systems reporting on the November 1992 5k vocabulary

test set.
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1 Productivity Measures

"* Refereed papers submitted but not yet published: 0

"* Refereed papers published: 0

"* Unrefereed reports and articles: 1

"* Books or parts thereof submitted but not yet published: 0

"* Books or parts thereof published: 0

"* Patents filed but not yet granted: 0

"* Patents granted (include software copyrights): 0

"* Invited presentations: 0

"* Contributed presentations: 0

"* Honors received:

"* Prizes or awards received: 0

"* Promotions obtained: 0

"* Graduate students supported > 25% of full time: 3

"* Post-docs supported > 25% of full time: 0

"* Minorities supported: 1 woman
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2 Summary of Technical Progress

Introduction and Background

In this work, we are interested in the problem of large vocabulary, speaker-independent continuous
speech recognition, and primarily in the acoustic modeling component of this problem. In devel-
oping acoustic models for speech recognition, we have confficting goals. On one hand, the models
should be robust to inter- and intra-speaker variability, to the use of a different vocabulary in recog-
nition than in training, and to the effects of moderately noisy environments. In order to accomplish
this, we need to model gross features and global trends. On the other hand, the models must be
sensitive and detailed enough to detect fine acoustic differences between similar words in a large
vocabulary task. To answer these opposing demands requires improvements in acoustic modeling
at several levels. New signal processing or feature extraction techniques can provide more robust
features as well as capture more acoustic detail. Advances in segment-based modeling can be used
to take advantage of spectral dynamics and segment-based features in classification. Finally, a new
structural context is needed to model the intra-utterance dependence across phonemes.

This project addresses some of these modeling problems, specifically advances in segment-based
modeling and development of a new formalism for representing inter-model dependencies. The
research strategy includes three main thrusts. First, speech recognition is implemented under the
N-best rescoring paradigm [1], in which the BBN Byblos system is used to constrain the stochastic
segment model (SSM) search space by providing the top N sentence hypotheses. This paradigm fa-
cilitates research on the segment model through reducing development costs, and provides a modular
framework for technology transfer that has already enabled us to advance state-of-the-art recogni-
tion performance through collaboration with BBN. Second, we are working on improved segment
modeling at the phoneme level [2, 3, 4] by developing new techniques for robust context mod-
eling, mechanisms for effectively incorporating segmental features, and models of within-segment
dependence of frame-based features. Lastly, we plan to investigate hierarchical structures for repre-
senting the intra-utterance dependency of phonetic models in order to capture speaker-dependent
and session-dependent effects within the context of a speaker-independent model. Additionally,
we have expanded the scope of our work to include some language modeling, recognizing that
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higher-order models of correlation can extend to this domain as well.

Summary of Recent Technical Results

In much of the first year of the project, we focused on improving the performance of the basic SSM
word recognition system. In brief, the accomplishments of that period included: improvements
to the N-Best rescoring technique by introducing score normalization; development of a method
for clustering contexts to provide robust context-dependent model parameter estimates [5]; exten-
sions to the classification and segmentation scoring formalism to handle context-dependent models
with long-range acoustic features; extension of the two level segment/microsegment formalism and
assessment of trade-offs in mixture vs. trajectory modeling [6]; development and assessment of au-
tomatically generated multiple-pronunciation word networks; and investigation of the use of tied
mixtures in the segment model [7].

The research efforts during this quarter have focused on porting the BU recognition system to
the Wall Street Journal (WSJ) domain, and beginning development of models (both acoustic and
language) that will capture higher level dependencies in speech. In particular, we have:

Ported the SSM word recognition system to the Wall Street Journal task domain: The ef-
fort to port our recognition system to the WSJ domain involved modifying functions to maintain
compatibility with BBN, modifying I/O formats to handle the new dictionary, and porting three
variations of the SSM trainer and recognizer. On the November 1992 5k vocabulary test set, using
the standard bigram language model, we achieved the following results:

% Word Error

SSM System SSM SSM+HMM
Baseline 8.1 7.5
Clustered covariances 8.1 7.6
Tied mixtures 9.2 8.1

which can be compared to the BBN HMM result of 8.7% [8]. These experiments confirmed pre-
vious results on the Resource Management (RM) corpus, that covariance clustering significantly
reduces storage (by a factor of ten for covariance parameters) without any reduction in recognition
performance. In fact, the clustered system worked slightly better on our development test set. Un-
fortunately, previous results on RM showing improvements with tied mixtures were not confirmed
in the WSJ experiments, and we intend to explore more specific regions of tying that have provided
performance gains for other sites.

Developed an initial dependence-tree model of intra-utterance observation correlation: An im-
portant goal of this project is the development of a hierarchical model of intra-utterance correlation
of phone observations. Our initial efforts in this area have been to extend the work of Chow and
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Liu on dependence trees [9] from discrete models to Gauss-Markov dependencies. We are currently
implementing the algorithm to find the minimal spanning tree, which is based on a mutual infor-
mation measure assuming a joint Gaussian model of phone observation vectors. In order to quickly

assess different models of dependence without the high cost of building a full word recognition
system, we plan to initially compare prediction errors for different models within the context of the

TIMIT corpus.

Implemented baseline language model estimation software for the WSJ task: Motivated by
the realization that inter- and intra-utterance correlation can be modeled at the language as well

as acoustic level, we have begun an effort in dynamic language modeling. As a first step in this
project, we have implemented the back-off algorithm for estimating n-gram language models [10]
and an efficient storage mechanism. In experiments on the 5k vocabulary, we have duplicated the
bigram perplexity measures reported in the literature, which we will use as a baseline against which
to measure improvements due to better modeling. We are currently developing a mixture n-gram
language model to better represent the topic-dependent structure of language.

Future Goals

Based on the results of the past year and our original goals for the project, we have set the following
goals for the next six months: (1) modify BBN's current N-best search algorithm to provide lattice
outputs for rescoring with the SSM; (2) further develop the hierarchical model formalism and
assess the trade-offs between linear and non-linear models of dependence; (3) implement a dynamic
language model and assess in the WSJ task domain; and (4) investigate unsupervised adaptation
in the WSJ task domain.
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3 Publications and Presentations

Papers appearing during the reporting period include one conference paper, a copy of which is
included with the report.

"A Comparison of Trajectory and Mixture Modeling in Segment-based Word Recognition,"
A. Kannan and M. Ostendorf, Proceedings of the International Conference on Acoustics,

Speech and Signal Processing, pp. 11327-330, April 1993.
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4 Transitions and DoD Interactions

This grant includes a subcontract to BBN, and the research results and software is available to

them. Thus far, we have collaborated with BBN by combining the Byblos system with the SSM

in N-Best sentence rescoring to obtain improved recognition performance, and we have provided

BBN with papers and technical reports to facilitate sharing of algorithmic improvements. On their

part, BBN has been very helpful to us in our WSJ porting efforts, providing us with WSJ data and

consulting on format changes.

The recognition system that has been developed under the support of this grant and of a

joint NSF-DARPA grant (NSF # IRI-8902124) is currently being used for automatically obtaining

good quality phonetic alignmer.ts for a corpus of radio news speech under development at Boston

University. The alignment effort is supported by the Linguistic Data Consortium, through a grant

that allowed us to add cross-word phonological rules to the segmentation software.
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5 Software and Hardware Prototypes

Our research has required the development and refinement of software systems for parameter es-

timation and recognition search, which are implemented in C or C++ and run on Sun Sparc

workstations. No commercialization is planned at this time.
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A COMPARISON OF TRAJECTORY AND MIXTURE MODELING IN

SEGMENT-BASED WORD RECOGNITION

Ashvin Kannu.. Mari Ostendorf

Electrical, Computer and Systems Engineering
Boston University

Boston, MA 02215, USA

ABSTRACT a discussion of our results and possible future work.

This paper presents a mechanism for implementing 2. MICROSEGMENT FRAMEWORK
mixtures at a phone-subsegment (microsegment) level The framework consists of two levels: the upper level
for continuous word recognition based on the Stochastic represented by phones and the lower ievel represented
Segment Model (SSM)..We investigate the issues that by microsegments (MS). Each phone-length segment is
are involved in trade-offs between trajectory and mix- divided into a fixed number of MS-sized regions. A
ture modeling in segment-based word recognition. Ex- regi,.n ;s characterized by a set of MS models, each
perimental results are reported on DARPA's speaker- an independent-frame SSM with a fixed number of
independent Resource Management corpus. distributions (multivariate Gaussians) representing a

variable-length sequence of frame-level observations.
The number of distributions (or MS model length) may

1. INTRODUCTION vary across regions but is constant for different MS

In earlier work, the Stochastic Segment Model (SSM) modcls representing the same region. WVe use a dezer-
ministic linear warping to obtain the MS-level segmen-

1,tation within a phone segment, since dynamic segmen-
the Hidden Markov Model (HMM) for representing tation did not lead to improved performance [3] and is

variable-duration phones. The SSM provides a joint much more expensive.

Gaussian model for a sequence of observations. Assum- The sequence of MS labels can be modeled usir.e a

ing each segment generates an observation sequence of variety of techniques. In [3], the sequence is modeled as
random length, the model for a phone consists of 1) a a first-order Markov chain, an assumption that was I
family of joint density functions (one for every obser- used in this work for Cl models. For CD models, how-
vation length), and 2) a collection of mappings that ever, the computation was too costly given the minimal
specify the particular density function for a given ob- benefit over independent MS regions. Consequently. for
servation length. Typically, the model assumes that the CD MS system, we represent only marginal prcba-
segments are described by a fixed-length sequence of bilities of the microsegment regions, which is equivalent
locally time-invariant regions (or regions of tied distri- to a mixture distribution at the microsegment level.
bution parameters). A deterministic mapping specifies Thus the probability of an observed segment Y g:%eiL
which region corresponds to each observation vector, phone a is defined as:

A framework has recently been proposed for model-
ing speech at the microsegment level (a unit smaller p(YIa) = YJ1Z...,, a'P(a40 1
than a phone segment) [3], in addition to the seg-
ment and frame level. Initial experiments with context-
independent (CI) phone classification suggested that where Yi and ai represent observations and MS labels
microsegment models provided a significant gain over respectively for MS region i. The components of the
the standard SSM when both models assumed con- MS mixture are MS models p(Yila;) arid the probabil-
ditional independence of frames given the phone seg- ities p(aila) which serve as mixture weights. In ea.lier
mentation. In this paper, we modify the microsegment work [3), it was found that tied-mixtures (sharing the
framework for word recognition, extend it to context- mixture components across all phones) produced poor
dependent (CD) modeling using mixture distributions, results, so tied mixtures were not explored here.
and investigate the trade-offs of using more distribu- We implemented three MS systems and compared
tions per microsegment (model length) versus more their performance with the 8-distribution long SSM.
mixture components. We present experimental results The (3,2,3) system used three MS regions in a segment
on the Resource Management task, and conclude with with 3 distributions in the first and last MS region and
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(1.1.1) MS syom (32.3) Ms ns- proximation

._.__....__..._._ ."___"_1 "._-_ P(Y 1a) : maxp(Y, Al f) =_ max p(aila)p(Yi jai, a),

I.,t"•'" /"l"-['•oAl i
... F - where A represents an MS label sequence for the phone

a. (Note that, for the Markov MS label sequence as-
.[p sumption, p(aila) is replaced by p(ailai-o,a) and a

MS-level dynamic programming search is needed.) As
we allow for a variable number of microsegment com-
ponents per region, choosing the dominant component

Wi) MS of the mixture results in the grammar introducing dif-

fering penalties on phones with different numbers of
mixture components. Therefore, the grammar is used

rr:-i ]Z in determining the best MS sequence but left out from
SISaib• SSN4[LJLL the segment acoustic probability, i.e.,

•p(Yla) & pY1A, a) z- p(Y1 ija, a), (2)

[][]-- -LIJ
Figure 1: Trajectory assumptions (illustrated for one and this algorithm is what is referred to here as
fea-(ure) for the SSM and MS systems. Clockwise "Viterbi" recognition. In experiments, it was observed

from top-left, (1,1,1), (3,2,3), (8x1) MS systems and 8- that the grammar probabilities had no effect on recog-

dis-ribution SSM. Mixture components (when present) nition performance.

are shown below the solid line. 4. ESTIMATION OF MS PARAMETERS

2 distributions in the middle MS region. The (1,1,1) Estimation of MS parameters involves estimating
system used three regions with one distribution length means and covariances of their associated Gaussians
each, and the (8xl) system used 8 regions each one dis- and the grammar probabilities for the MS units. We
tribution long. 'rhese systems make different assump- first describe the basic procedure and then describe ex-
tions about the modeling of trajectories of features of tensions to context modeling.
speech. The (3,2,3) system assumes that trajectories
move within a region, while the (1,1,1) system assumes 4.1. Basic procedure
trajectories are fixed within a region but has more mix- Since the microsegments do not correspond to any lin-
ture components. The (8xl) system assumes no re- guistic unit, we need to automatically determine and
striction on the trajectories, and has the same form label them in the training database. Training of MS
as 8-distribution SSM except that the distributions are parameters involves the following steps:
mixtures. These trajectory assumptions are schemati-
cally illustrated for one feature in Figure 1. 1. With the phone segmentation fixed, find initial es-

timates of MS models -

3. RECOGNITION (a) Use binary divisive clustering on data to get
initial means and partitions.

Implementation of the recognition search involves a dy- ( Uia means and partitions.

namic programming or Viterbi search at the segment (b) Use K-means to improve partitions and define

level, as for other SSM systems. For the microsegment microsegments labels.

framework, the difference from the standard SSM is (c) Find maximum-likelihood estimates of mix-
the computation of the probability of a segment for a ture components with the partitions found in
hypothesized phone label, which can be implemented 1 (b).
either as a mixture distribution (as in Equation 1) or 2. Use segmental K-means to iteratively improve
approximated by finding the most likely MS sequence. mixture component parameter estimates -
Both methods were investigated here.

The segment probability computation based on the (a) Segment speech with current MS parameters.
dominant mixture components was investigated to re- (b) Find maximum-likelihood estimates of the MS
duce recognition search costs. Under this mode, the parameters with the new segmentatiun.
search jointly finds the most probable phone and MS
sequence, replacing the probability p(Yla) by the ap- These steps are described in more detail below.
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Iii tialization Instead we define context classes by the collection of tri-
Each MS region is initialized independently of other phones at the terminal nodes of the context tree grown
regions. For each rn-distribution long MS region, an n- using binary divisive clustering as in [4], but with the
ary tree with one node for each phone is specified. Each generalized likelihood ratio distance measure [5, 6].
node consists of all the observations from the training Once we define context classes to use, we can model
set that map to this particular phone and MS region context using microsegments in different ways and two
according to the deterministic linear warping. To split schemes were evaluated. First, we can retain the Cl MS
a node in step 1 (a), K-means clustering with K=2 is alphabet' and estimate models for these labels condi-
performed at the microsegment level (the mean of a tioned on the context classes In this case, we estimate
cell is of dimension m x k, where k is the dimension of CD models from the MS observations that are assigned
the feature vector), using a Mahalanobis distance and a a CI label according to the training segmentation and
linear time warping to map observed frames to regions also correspond to the specific context class. Alterna-
in the microsegment. A greedy-growing algorithm is tively, we can incorporate information of the context
used to split the node with the maximum reduction classes in the MS initialization process and obtain a
of node distortion. The reduction of node distortion is CD MS alphabet. In this case, the MS tree growing
the difference between the total distortion of the parent procedure is modified to start with a node for each
node and the sum of the total distortions of the two context class for each phone, with observations arising
child nodes, where the distortion of a node is defined as from that specific context class and that MS region.
the sum of length-normalized microsegment distances The tree is grown until we have the desired number of
from the mean. terminal nodes. The rest of the procedure is analogous

The number of terminal nodes is constrained so that to the estimation of CI MS acoustic models.
the number of free parameters are comparable across The current approach to estimating the CD MS al-
experiments. Specifically, for the CI experiments the phabet results in many fewer free parameters than the
number of terminal nodes is equal to three times the context-dependent system based on the CI MS alpha-
number of initial nodes, resulting in three times as bet. In order to compare systems with similar numbers
many parameters as that used in the CI 8-distribution of free parameters, the MS tree growing algorithm was
SSM. After the tree has been fully grown, K-means modified such that the tree is grown beyond the first-
clustering is performed within each phone sub-tree, to level "terminal" nodes (called "covariance nodes" and
obtain better estimates (Step 1(b)). The resulting clus- having at least 250 observations to estimate a full co-
ters define the phone-dependent MIS alphabet, referred variance) to a second-level set of terminal nodes ("mean
to here as the CI MS alphabet. The means and covari- nodes") based on a lower threshold, i.e. 50 observa-
ances of the observations in the terminal nodes are the tions. The mean nodes now constitute an "extended"
initial estimates for the CI MS models. alphabet and share the covariance of their parent co-

variance node.
Iterative segmentation/re-estimation

Once initial estimates for the MIS models are available,
a segmental K-means procedure is used to obtain bet- Word recognition with the MS-based SSM is pen r-med
ter estimates. This involves iterating between segment- using the N-best rescoring formalism [2] on DA. PA's
ing speech into microsegments using the current MS Resource Management speaker-independent c( ,us
parameters and finding new maximum-likelihood esti- with the word-pair grammar. Gender-dependent AS
mates for the MS models from the segmented speech. models are trained on the SI-109, 3990 utterance _-t.

Bigram and marginal probabilities of the MS labels The systems use frame-based observations that include
(p(ailai-..,o) and p(aila), respectively) are given by 14 mel-warped cepstra and their first differences, plus
the relative frequencies observed after each segmenta- the first difference of log energy.
tion pass. The bigram probabilities, which are used Development was performed on the February 1989
only for experiments with the 3-region CI MS alphabet, test set and results are also reported on the October
are smoothed with the a priori probabilities. During 1989 test set. The experimental results for the dif-
recognition it was observed that the grammar score is ferent systems using Viterbi recognition are shown in
tivobrders of magnitude smaller than the acoustic score Table 1. For the CI MS systems, we see that it is bet-
of the microsegments and its exclusion does not affect ter to have more mixture components than mixtures
recognition performance with the Viterbi search. 3 or context-modeling experiments, "CI MS alphabet" refers

4.2. Context Modeling to using the MS labels that were produced from the Cl MS tree.
In the strict sense, this is not really CI a during re.estimation

Context modeling with microsegments is not practical of the models we use context-dependent variants of these labels.
with equivalents of "diphones" or "triphones", since However, we use this nomenclature to differentiate this from the
the alphabet size is much larger than that for phones. "CD MS alphabet" that is introduced later.
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that there is a trade-off in using mixture models and
Average Word Error 0 trajectory models, associated with the level of detail

MS System 8xl 3,2,3) 1,1,1 of the modeling unit (e.g., Cl vs. CD), although some
Context-independent 7.8 7.6 7.3 level of trajectory constraints is useful even for C1 mod-

CD with CD MS alph. - 6.3 6.5 els. The results support the use of whole segment mod-
CD with CI MS alph. - 5.8 6.1 els in the context-dependent case, and microsegment-

Table 1: Performance of the MS systems using Viterbi level (and possibly segment-level) mixtures rather than
frame-level mixtures.

recognition on the February 89 test set. The 8- the mixtureit
distibuionSSMachives8.9 an 4.8 wod eror In the "mixture" implementation of recognition, wedistribution SSM achieves 8.9% and 4.8% word error ue Smdl hc eenttanduiga"re
for I ad C modls espctivly n tis tst et. used MS models which were not trained using a "true"for CI and CD models respectively on this test set,.itr rcdrbtwt h emnainpomixture procedure, but with the segmentation pro-

duced by the dominant component of the best scoring
of sequences since the (1,1,1) system has the best CI mixture, i.e., with a Viterbi-style training. Perform-
performance. On the other hand, for CD systems, it ing mixture training may improve performance further.
is more important to model the trajectory, since the Another possible extension is to further investigate the
(3,2,3) system outperforms the (1,1,1) system. In ad- use of tied microsegment mixtures. Although previous
dition, the 8-distribution CD SSM, which does not use work suggested that tied MS mixtures were not useful,
mixtures and models the trajectories at the segment these results were based on region-dependent mixtures,
rather than the MS level has the best performance. which we have since found are not robust in recent ex-

The initial experiments showed that the Cl MS al- periments with frame-based mixtures in the SSM.
phabet gave better performance than the CD MS al-
phabet. However, these systems were not comparable ACKNOWLEDGMENTS
because of differences in the number of free parame- The authors gratefully acknowledge BBN Inc. for
ters, so further experiments were conducted with the their help in providing the N-best sentence hypotheses.
extended CD MS alphabet and the (3,2,3) case using a We thank J. Robin Rohlicek of BBN and Vassilios Di-
comparable number of means in both cases. The best galakis of SRI for useful discussions. This research was
CD alphabet system in this case had a maximum of jointly funded by NSF and DARPA under NSF grantfive mean nodes per covariance node. Viterbi recog- number IRI-8902124, and by DARPA and ONR under
nition for this system resulted in 6.1% word error for ONR grant number N00014-92-J-1778.
the February 89 task while mixture recognition resulted
in 5.8%, which was also achieved with the Cl alpha- REFERENCES
bet. Ioowever, on an independent test set (October 89), [1] M. Ostendorf and S. Roukos, "A Stochastic Segment Model
the CD alphabet system performed poorly with both for Phoneme-Based Continuous Speech Recognition," IEEE
Viterbi and mixture recognition. Thus, we conclude Trans. on Acoalst., Speech and Signal Processing, pp. 1857-
that the CI alphabet gives more robust CD models. 1869, December 1989.
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